
3-D Life • Cell Environment Design at Your Fingertips

Application Note 3: Co-culture of tumor and stroma cells in 3-D Life Hydrogels

The role of stroma in tumor progression

The role of stroma in cancer progression is gaining increased attention in research and drug development (Polyak and Kalluri, 2010; Anton and Glod, 2009). 3-D in vitro co-culture of cancer cells and cells of the tumor microenvironment allow the investigation of this important interplay between these cells. Biochemically defined 3-D matrices are crucial to distinguish between effects of matrix components and factors produced by the cells during co-culture.

A tumor-stroma model in 3-D Life Hydrogels

3-D Life Hydrogels are used to co-culture the human breast cancer cell line MCF-7 with primary human dermal fibroblasts (Figure 1 A-C). MCF-7 cells cultured alone in hydrogels form tumor-like spheroids (Fig. 1 A), whereas human dermal fibroblasts cultures alone in hydrogel appear in an outstretched phenotype typical for dermal fibroblasts in vivo (Fig. 1 B). The co-culture of both cell types results in a tumor-stroma model that allows the specific manipulation of the culture with additional factors and the analyses of the effects of this co-culture on each cell type (Fig. 1 C).

described in the 3-D Life User Guide. 3,000 MCF-7 cells and 10,000 fibroblasts were seeded alone or combined in one gel. Gels were incubated in DMEM (low glucose) containing 4 mmol/I L-Glutamine and DMEM/Ham's F12 (1:1) containing 2.5 mmol/I L-Glutamine at a ratio of 1:2 supplemented with 10% (v/v) FBS. After 14 days of culture, cells in hydrogels were chemically fixed in 4% paraformaldehyde in PBS for 1 hour and washed four times for 5 min in PBS. Cells were permeabilized with 0,5% (v/v) Triton® X-100 in PBS for 10 min and washed three times for 10 min in PBS.

Gels were incubated with $1.7 \,\mu\text{g/ml}$ phalloidin-TRITC (Sigma) in PBS for $1.5 \,\text{hr}$ in the dark and subsequently washed three times for $5 \,\text{min}$ in PBS. Nuclei were stained by incubation of gels with $17 \,\mu\text{mol/l}$ Syto 24 Green® (Invitrogen) for 30 min at room temperature in the dark. Gels were washed three times $5 \,\text{min}$ with PBS and stored in PBS at 4°C . Cells in the gel were observed by epifluorescence microsopy.

References

Polyak K., Kalluri, R. The role of the microenvironment in mammary gland development and cancer. Cold Spring Harb. Perspect. Biol. 2010;2:a003244.

Anton, K, Glod, J. Targeting the tumor stroma in cancer therapy. Curr. Pharm. Biotechnol. 2009;10(2):185-191.

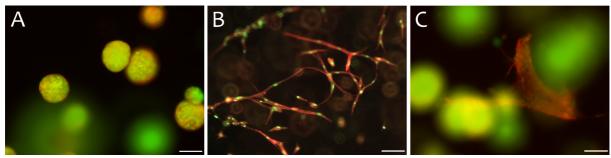


Fig. 1: Epifluorescence microscopy of mono- and co-culture of MCF-7 cancer cells and human primary dermal fibroblasts in 3-D Life Hydrogels. Cells were cultured for 14 days in Dextran gels modified with 0,5 mmol/l RGD peptide as described in Methods. A: MCF-7 cells cultured alone, B: fibroblasts cultured alone, C: co-culture of MCF-7 and fibroblasts. Red: actin cytoskeleton; green: nuclei. Scale bar: 100 μm.

Methods

Cells were cultured in 30 μ l 3-D Life Dextran Hydrogels crosslinked with MMP-cleavable CD-Link at a crosslinking strength of 3 mmol/l maleimide (Maleimide-Dextran) and SH (CD-Link) groups and modified with 0.5 mmol/l RGD peptide. Gels were prepared as

Products used

3-D Life Dextran-CD Hydrogel Kit, Cat. No. G91-1 3-D Life RGD Peptide, Cat. No. 09-P-0